CONTENTS

Significance of the Prize 1

JAPAN PRIZE - Peace and prosperity for mankind 2

The Japan Prize Foundation 3

Main Activities of the Foundation 4

The Japan Prize .. 5

- Background of Establishment
- Nomination and Selection Process
- Fields Selection Committee and Selection Committee
- Fields Eligible for the 2014 Japan Prize Selected

Profiles of Japan Prize Laureates 9

Directors, Auditors and Councilors of the Foundation 27
Significance of the Prize

Man is a species that has used wisdom to preserve its existence. In modern times, much of that wisdom has come to depend on knowledge derived from academic research. Nowadays, in particular, the rapid development of scientific and technical knowledge owes much to the endeavors of researchers and scientists. Research excellence is recognized through the award of various prizes, of which the Nobel Prize is one. We can say that the pedigree record of recipients reveals, not only to specialists but also to the general public, a history of the unique perspective that characterizes these prizes.

This being the case, what history should the Japan Prize reveal? Considering that the overview of the Japan Prize refers to making concurrent contributions to the progress of science and to human peace and prosperity, it should reveal a history of both scientific and technological progress and a resultant history of peace and prosperity.

Looking back, it is simple to point out the overlapping existence of both of these. Even if, at some point in history, some aspect of science and technology exerted a negative outcome on mankind, over the longer course of time it is indisputable that scientific and technological advances have brought peace and prosperity to humanity.

Through the lineage record of its recipients, the Japan Prize speaks of a history that combines scientific and technological progress and human peace and prosperity. The Prize is not confined, however, to telling only of developments slowly revealed over the passage of time.

While respecting the various ways science and technology is currently unfolding, the prize endeavours to show history in progress based on a premise that the role of today’s researcher is to create an overlapping history.

It is our sincerest wish that by reaching not just researchers but also the broader population the developments revealed will go on to ensure that science and technology make a substantial contribution to the peace and prosperity of humankind.
Peace and prosperity for mankind is the common aspiration for all people of the world, and science and technology have played an immense role in this cause. Advancement in science and technology will no doubt continue to provide a powerful underpinning for the future peace and prosperity of the people.

The Japan Prize honors scientists and engineers from around the world whose original and outstanding achievements in science and technology are recognized as having advanced the frontiers of knowledge and served the cause of peace and prosperity.

Since the first presentation ceremony in 1985 to the 29th ceremony to be held this year, 81 eminent scientists from 13 countries around the world have been awarded the prize.

When looking back over the history of the establishment of Japan Prize, I can see that there was a strong desire to “express Japan’s gratitude to international society”. Because Japan, after World War II, wouldn’t have developed into a modern nation so rapidly if it had not been for the wide range of scientific and technological knowledge it learned from abroad. Today, the strong enthusiasm of the first chairman and the initial members of this foundation continue to live on in our hearts.

In April every year, the Japan Prize presentation ceremony and the banquet are held in the presence of Their Majesties the Emperor and Empress of Japan, and are attended by representatives of the Three branches of the government as well as eminent persons from academic, governmental and political circles. It is a day when the laureates’ outstanding achievements are honored and at the same time, an important day on which we wish for the unlimited advancement of science and technology.

The Japan Prize Foundation will continue to aspire for advancement in science and technology that contributes to the peace and prosperity of mankind by not only through the Japan Prize presentation but also through nurturing young scientists and engineers of tomorrow, and conducting promotional and educational activities in the field of science and technology.
The Japan Prize Foundation

Objectives

Bearing in mind the fact that peace and prosperity for mankind is the common aspiration of all people, the Japan Prize Foundation encourages research that will contribute to the development of science and technology, and promotes the comprehensive spread and development of ideas and information in science and technology.

Activities

The Foundation conducts the following activities to accomplish its objectives:

1) Recognize outstanding achievements in science and technology with the Japan Prize
2) Encourage the study of science and technology through research grants and promotional activities
3) Promote the diffusion of knowledge and philosophy in science and technology through various activities including dissemination of information materials and research papers, and seminars
4) Other activities to fulfill the objectives of the Foundation

History

1982 The Japan Prize Preparatory Foundation is established.
1983 The establishment of the Japan Prize is endorsed by the Cabinet.
1985 The 1st Japan Prize Presentation Ceremony is held.
1987 The Foundation starts sending Japanese students to the annual Stockholm International Youth Science Seminar.
1989 The Foundation starts hosting “Easy-to-understand Science and Technology Seminars”.
2006 The Foundation starts awarding Research Grants.
2010 As of October 1, 2010, the Foundation changes its legal status to a Public Interest Incorporated Foundation and renames itself to “The Japan Prize Foundation”.

The Japan Prize logo was designed by Mr. Yusaku Kamekura, then President of Japan Graphic Designers Association Inc. Commenting on his work, Mr. Kamekura said, “I used the image of the sun, the source of all energy for its primary design. The circles were added to represent perfection and truth.”
Main Activities of the Foundation

The Japan Prize

The Japan Prize Foundation honors those whose original and outstanding achievements in science and technology are recognized as having advanced the frontiers of knowledge and served the cause of peace and prosperity for mankind. A Japan Prize laureate receives a Certificate of Merit and a Prize Medal. A cash prize of 50 million Japanese yen is also awarded in each prize category. The Japan Prize Presentation Ceremony is held every April in the presence of Their Majesties the Emperor and Empress of Japan, with leaders from every field of endeavor in attendance.

Research Grants

The Foundation provides research grants to scientists and researchers who are under 35 years of age. Every year, the Foundation selects projects in the same fields as the Japan Prize and gives one million Japanese yen for a project. Each year, about 20 young scientists receive grants.

“Easy-to-Understand Science and Technology Seminars”

The Foundation hosts series of seminars on advanced technologies that are being used widely in our everyday lives. The seminars are designed for students and the general public, and experts in the related fields explain in plain language the technologies that are the focus of interest at that time. Over 200 seminars have been held across Japan since the first seminar was held over 20 years ago.

Stockholm International Youth Science Seminar (SIYSS)

The Japan Prize Foundation sends two Japanese students to the annual Stockholm International Youth Science Seminar, which is held under the auspices of the Swedish Federation of Young Scientists and with the support of the Nobel Foundation. Since the program started in 1987, some 50 students from Japan have participated in this event.
The Japan Prize

Background of Establishment

The Japan Prize Preparatory Foundation was established on November 1, 1982, with the approval of the Prime Minister, for the purpose of establishing the Japan Prize as a prestigious international award in the fields of science and technology.

The creation of the Japan Prize was motivated by the desire to “express Japan’s gratitude to international society.” This plan was advocated in 1981 by Dr. Taro Nakayama, the then Director General, the Prime Minister’s Office of the Suzuki Cabinet, and supported with the fund donated by the late Mr. Konosuke Matsushita, the founder of Panasonic Corporation.

The Government issued the following cabinet endorsement on the establishment of the Japan Prize on October 28 of the same year.

Establishment of the Japan Prize

The official position of the Japanese Government is that the Japan Prize, to be bestowed by the Science and Technology Foundation of Japan*, will serve to deepen the understanding of the role played by science and technology in furthering world peace and prosperity, thereby making a vital contribution to the positive development of mankind. Based on this judgment, the government agencies concerned are urged to offer whatever cooperation necessary in all phases pertinent to this prize.

(Cabinet Endorsement, October 28, 1983)

* now renamed as The Japan Prize Foundation

Lifelong Ambition

Peace and prosperity for mankind have been my lifelong desires. I am extremely pleased, therefore, that the Japan Prize has been established with the specific goal of making some contribution on behalf of Japan to the development of international society.

The progress of modern science and technology has been phenomenal. It is not overstating its role to say that we owe the civilization we enjoy today to this very progress.

On the other hand, there are still many global problems which remain to be solved, and the necessity to seek the counsel of many people is greater than ever before.

Under such circumstances, it is appropriate that Japan, in consultation with the international community, honors, those who have produced outstanding achievements in the fields of science and technology.

It is my sincere hope that the Japan Prize achieves the recognition it deserves.

The first President of the Foundation
Konosuke Matsushita
The Japan Prize

Nomination and Selection Process

Every November the Japan Prize Fields Selection Committee designates and announces two fields in which the Japan Prize will be awarded two years hence. At the same time, the Foundation calls for over 13,000 nominators, strictly comprised of prominent scientists and researchers from around the world invited by the Foundation, to nominate the candidates through the web by JPNS (Japan Prize Nomination System). The deadline for nomination is the end of February of the following year.

For each field, a Selection Subcommittee conducts a rigorous evaluation of the candidates’ academic achievements. The conclusions are then forwarded to Selection Committee, which conducts evaluations of candidates’ achievements from a wider perspective, including contributions to the progress of science and technology, and significant advancement towards the cause of world peace and prosperity, and finally the selected candidates are recommended for the Prize.

The recommendations are then sent to the Foundation’s Board of Directors, which makes the final decision on the winners.

The nomination and selection process takes almost one year from the time that the field are decided. Every January, the winners of that year’s Japan Prize are announced. The Presentation Ceremony is held in mid-April in Tokyo.
Members of the Fields Selection Committee

Chairman
Katsuhiko Shirai
Chairperson, The Foundation for the Open University of Japan

Vice Chairman
Kohei Miyazono
Professor, Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo

Member Kazuhito Hashimoto
Professor, Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo

Member Yoshihiro Hayashi
Director General, Yamashina Institute for Ornithology

Member Nobuhide Kasagi
Principal Fellow, Center for Research and Development Strategy, Japan Science and Technology Agency

Member Tsutomu Kimura
Adviser to the Minister of Education, Culture, Sports, Science and Technology

Member Hiroshi Kuwahara
Senior Advisor Emeritus, Hitachi Ltd.

Member Kenichi Mori
Visiting Professor, Graduate School of Innovation Studies, Tokyo University of Science

Member Tohru Nakashizuka
Professor, Department of Environmental Life Sciences, Graduate School of Life Sciences, Tokohu University

Member Noriko Osumi
Director, Center for Neuroscience, Tohoku University School of Medicine

Member Masakatsu Shibasaki
Executive Director, Institute of Microbial Chemistry

Member Atsuko Tsuji
Editorial Writer, The Asahi Shimbun

Members of the 2013 Japan Prize Selection Committee

Chairman
Hiroshi Komiya
Chairman of the Institute, Mitsubishi Research Institute, Inc., President Emeritus, The University of Tokyo

Vice Chairman
Ryozo Nagai
President, Jichi Medical University

Member Makoto Asashima
Executive Director, Japan Society for the Promotion of Science

Member Kunio Iwatsuki
Director, The Japan Prize Foundation

Member Masafumi Maeda
Executive Vice President, The University of Tokyo

Member Masayuki Matsuhashi
Director, The Japan Prize Foundation

Member Makoto Misono
Professor Emeritus, The University of Tokyo

Member Hideo Miyahara
Executive Director of Board of Directors, Microbial Chemistry Research Foundation

Member Takahiko Sasazuki
University Professor, Institute for Advanced Study, Kyushu University

Member Atsuko Tsuji
Editorial Writer, The Asahi Shimbun

Selection Subcommittee for the “Materials and Production” field

Chairman
Masafumi Maeda
Executive Vice President, President, The University of Tokyo

Member Makoto Konokami
Vice President, The University of Tokyo

Member Hideo Hosono
Professor, Frontier Research Center, Tokyo Institute of Technology

Member Motonori Kanai
Professor, Department of Medicinal Chemistry, Graduate School of Pharmaceutics, The University of Tokyo

Member Takashi Kato
Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo

Deputy Chairman
Kazunori Kataoka
Professor, Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo

Member Fumihiko Kimura
Professor, Department of Mechanical Engineering, Faculty of Science and Engineering, Hased University

Member Noritaka Mizuno
Professor, Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo

Member Keiichi Nagai
Manager Director of GREEN Energy Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science

Member Takashi Nakamura
Professor, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

Member Takeshi Ueno
Executive Officer, Panasonic Corporation, Associate Director of R&D Division

Selection Subcommittee for the “Biological Production and Biological Environment” field

Chairman
Kunio Iwatsuki
Director, The Museum of Nature and Human Activities, Hyogo

Member Taizo Hogetsu
Professor Emeritus, The University of Tokyo

Member Nori Kurata
Professor, National Institute of Genetics

Member Kei-ichi Maeda
Professor, Graduate School of Agricultural and Life Sciences, The University of Tokyo

Member Shigetou Namba
Professor, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo

Member Harufumi Nishida
Professor, Faculty of Science and Engineering, Department of Biological Sciences, Chuo University

Member Fumihiko Sato
Professor, Division of Integrated Life Science, Graduate School of Biosciences, Kyoto University

Member Akio Shiomomura
Professor, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo

Member Yoshishita Shirayama
Executive Director of Research, Japan Agency for Marine-Earth Science and Technology

Member Takakazu Yunoto
Professor, Primate Research Institute, Kyoto University

(alphabetical order, titles as of December, 2012)
Background and rationale:
Today, our world is in the midst of rapidly developing information and knowledge-based society. The advancement of essential technologies in electronics, information, and communication have brought about dramatic improvement in productivity and have also revolutionized the speed, efficiency, and the scope of information exchange, thereby contributing significantly to the evolution of human society through creation of new cultures and lifestyles. In addition, these advancements are also playing a significant role in the field of energy management by responding to the ever-increasing energy consumption.

Amid such changes, it is anticipated that further advancement of these technologies will not only improve its reliability and security but will also enable us to respond to new social issues, thereby contributing greatly to the sustainable development of human society.

Achievement eligible:

The 2014 Japan Prize in the field of “Electronics, Information, and Communication” is awarded to individual(s) who have made significant contributions to society by achieving scientific and technological breakthroughs in creating new industries and improving productivity, developing essential technologies and systems that contribute to the realization of information and knowledge-based society, and developing fundamental science and technologies that have high potential to promote further advancement of our society.

Schedule (2013-2015)

The fields eligible for the Japan Prize (2013 to 2015) have been decided for the two research areas, respectively. These fields rotate every three years, basically.

Every year the Fields Selection Committee announces the eligible fields for the next three years.

<table>
<thead>
<tr>
<th>Areas of Physics, Chemistry and Engineering</th>
<th>Year</th>
<th>Eligible Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2013</td>
<td>Materials, Production</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>Electronics, Information, Communication</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Resources, Energy, Social Infrastructure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Areas of Life Science, Agriculture and Medicine</th>
<th>Year</th>
<th>Eligible Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2013</td>
<td>Biological Production, Biological Environment</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>Life Science</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Medical Science, Medicinal Science</td>
</tr>
</tbody>
</table>
Profiles of Japan Prize Laureates

1985 (1st)

Field of Information and Communications

Outstanding achievement in the field of electronics and communications technologies

Dr. John R. Pierce
Professor Emeritus at Stanford University.
USA Born in 1910 Died in 2002

Dr. Pierce’s achievements in the field of information and telecommunication engineering represent the highest scientific caliber in the United States. His work has resulted in the theoretical development of the possibilities of communications satellites and of broad-band digital transmissions via pulse code modulations and multivalent signals.

Field of Materials Science and Technology

Pioneering contributions to materials science with impact on new materials technology such as amorphous solids

Dr. David Turnbull
Professor at Harvard University.
USA Born in 1915 Died in 2007

Dr. Turnbull, who formulated the guiding principles of new materials development, predicted what kinds of alloys will, like glass, tend to assume an amorphous character with an irregular alignment of atoms in rapid cooling from a molten state. In addition, this prominent scientist cleared the way for the production of high-density ceramics and perfect crystals for use in ICs.

Field of Biotechnology

Outstanding achievement in basic theory in the field of immobilized enzymes and their practical applications

Dr. Ephraim Katchalski-Katzir
Professor at Tel Aviv University and at Weizmann Institute of Science.
Israel Born in 1916 Died in 2009

Dr. Katzir, the fourth President of the State of Israel from 1973 to 1978, is credited with the invention and development of the bioanalyzer and bioreactor, two devices employing immobilized enzymes and cells which form part of the foundation of biotechnology.

Field of Medical Technology

Research and development of artificial organs and their relevant technology

Dr. Willem J. Kolff
Professor at the University of Utah. Head of the Institute for Biomedical Engineering.
USA Born in 1911 Died in 2009

As father of artificial organ technology, Dr. Kolff achieved clinical success in the development of a rotating drum-type kidney device in 1943. He then continued to work to popularize disposable-type artificial kidneys while playing a leading role in the development of artificial lungs and hearts.
Dr. Theodore H. Maiman
Former chief of research at Hughes Research Laboratories
President of Maiman Associates Inc.
USA Born in 1927 Died in 2007

This pioneer in electro-optics became in 1960 the first scientist to succeed in generating radiation with a ruby laser, greatly aiding subsequent research on lasers. Dr. Maiman has also made a major contribution towards the advancement of the fields of natural science and engineering technology.

Dr. Georges Vendryes
Scientific advisor to the president of the Commissariat l’Energie Atomique
France Born in 1920 Died in 2010

Following his contribution to the establishment of the fundamentals of nuclear power design and the promotion of fast breeder reactor development, Dr. Vendryes’ work led to the successful completion of “Super Phoenix,” the world’s first large-scale test breeder, establishing practical technologies for a solution to mankind’s energy problem in the future.

Dr. Henry M. Beachell
Former head of the Plant Breeding Department at the International Rice Research Institute
Advisor to the Farms of Texas Company
USA Born in 1906 Died in 2006

Dr. Beachell has taken part in the IRRI’s rice strain improvement projects since the institute’s establishment. In 1966 he developed the IR8 strain that helped pave the way for the “green revolution” in developing nations.

Dr. Gurdev S. Khush
Head of the Plant Breeding Department at the International Rice Research Institute
India Born in 1935

Carrying on the work begun by Dr. Beachell, Dr. Khush further improved IR8 and in 1976 developed IR36, a strain highly tolerant of poor environmental conditions. IR36 contributed immensely to the attainment of production stability and self-sufficiency in rice in tropical and subtropical countries.

Dr. Donald A. Henderson
Dean, Johns Hopkins University, School of Hygiene and Public Health
USA Born in 1928

As the first chief medical officer of the WHO World Smallpox Eradication Office, Dr. Henderson dedicated his efforts to the development of group vaccination programs and contributed to its historic success through the worldwide eradication of smallpox.

Dr. Isao Arita
Director, Kumamoto National Hospital
Japan Born in 1926

As the second chief medical officer of the WHO World Smallpox Eradication Office, Dr. Arita established basic disease control knowledge and performed epidemiological analysis as well as surveys and research into vaccine quality improvement.
Dr. Frank Sherwood Rowland
Professor at University of California, Irvine
USA Born in 1927 Died in 2012

In 1974, Dr. Rowland, who studied physical chemistry, was the world’s first scientist to point out the mechanisms by which chlorofluorocarbons could destroy the ozone layer which protects life on earth from harmful ultraviolet solar radiation.

He also predicted that if emission of chlorofluorocarbons continues at its current rate, it would eventually result in a 7-13% loss of the total ozone.

Dr. Rowland’s theoretical insights and predictions have been verified by scientists throughout the world, and have done much to strengthen international efforts for the preservation of stratospheric ozone.

Dr. Elias James Corey
Professor at Harvard University
USA Born in 1925

Dr. Corey’s study covered almost all fields of organic chemistry. He became the first researcher to synthesize pure prostaglandins in natural, optically active form. This allowed the large scale production of all natural prostaglandins to provide a stable supply for other researchers, thus contributing considerably to the development of biochemistry and medicine.

His synthesis had three major advantages over other methods in terms of efficiency, versatility, and economy.

Dr. Corey’s achievement in the synthesis of eicosanoids is a monumental work in modern medicinal science. It is broadly expected that this synthesis will facilitate development of medicines for such diseases as cerebral thromboisis, arteriosclerosis and gastric and intestinal ulcers.
Dr. Marvin Minsky
Professor of Electrical Engineering, MIT
USA Born in 1927

Dr. Minsky published his paper “Steps Toward Artificial Intelligence” in 1961 and this gave Artificial Intelligence (AI) world wide exposure and has earned Dr. Minsky the title of “Father of AI”. Artificial Intelligence became increasingly complex by the 1970s, involving vast amounts of knowledge and the need to use specially appropriate pieces of knowledge at particular times. Dr. Minsky proposed a theory of frames for the effective representation and utilization of knowledge in computers. In the 1980s, AI has produced many more practical application systems and many researchers have turned toward the question of how to make machines learn more by themselves. In addition to the development of the theory and practical application systems, he emphasized the necessity of study on the human mind including emotion and self consciousness. In his book “Society of Mind,” he proposed a model of the human mind which consists of many small agents (computers) working together by communicating with each other. His proposal is expected to further expand the AI technology to other fields of science and help promote AI applications.

Dr. William Jason Morgan
Professor at Princeton University
USA Born in 1935

Dr. Morgan began his revolutionary work by dividing Earth’s outer shell into some 20 plates, analyzing their movements as rigid, rotating segments of the shell, and measuring absolute velocities of plate motion. Mid-oceanic ridges, subduction zones and transform faults all came to be interpreted as results of the movements of these plates. The great significance of Dr. Morgan’s theory became widely recognized and his work subsequently triggered numerous studies in a variety of fields.

Dr. Dan Peter McKenzie
Professor at Cambridge University
UK Born in 1942

Dr. Mckenzie has analyzed earthquake systems in the circum-Pacific region and has demonstrated independently that the floor of the Pacific Ocean moves as a single plate, rotating against North America and East Asia. In collaboration with Dr. Morgan, Dr. Mckenzie has also carried out a geometrical analysis of triple junctions where three plates meet. This work has contributed greatly to understanding the relative motion of plates and the energetics of plate movements. He has also proposed the highly original model that large sedimentary basins, important in the formation of oil and natural gas deposits, are formed by thinning of the crust due to plate motion.

Dr. Xavier Le Pichon
Directeur du Département de Géologie, Ecole Normale Supérieure
France Born in 1937

Dr. Le Pichon, inspired by the work of Dr. Morgan has independently determined plate movements over the entire surface of Earth, using ocean floor spreading velocities estimated from paleomagnetic patterns and the directions of transform faults. He has also published a book on plate tectonics which has had a great influence on Earth scientists throughout the world, and has played a major role in seafloor investigation at plate boundaries. Through these works, he has contributed greatly to the understanding of the geological nature of plate boundaries under the ocean.
1991 (7th)

Field of Applied Mathematics

Contributions to analysis and control of distributed systems, and to promotion of applied analysis

Dr. Jacques-Louis Lions
The Chairman of Analysis and Systems Control at the Collège de France and the President of National Center of Space Studies
France Born in 1928 Died in 2001

Dr. Lions led the world to establish the new field of applied mathematics which makes good use of expertise inherited inside the traditional discipline of analysis and which can fully benefit from the powerful functions of modern computers.

His research and achievements have covered exceedingly wide areas, including establishment and development of the control theory of distributed systems which are governed by partial differential equations.

The method is expected to be the most promising among existing mathematical approaches to global and environmental problems.

As for applications in industry, Dr. Lions made considerable contributions to computational aerodynamics for the aerospace industry, simulation for the petroleum industry and mathematical analysis for the French Energy Agency.

1992 (8th)

Field of Science and Technology of Material Interfaces

Contributions to the new development of the chemistry and physics of solid surfaces

Prof. Dr. Gerhard Ertl
Director of Fritz-Haber Institute of Max Planck Society, Honorary Professor at the Free University Berlin and at the Technical University Berlin
Germany Born in 1936

Since the 1960s, Professor Ertl has developed extensive studies on the chemisorption phenomena of atoms or molecules of representative chemicals on metal surfaces, and has explained a number of important phenomena such as phase transitions in chemisorbed layers and the surface reconstruction induced by adsorption.

He has also pioneered and developed the study of the dynamical aspects of chemical processes on metal surfaces in atomic and molecular level.

By a series of outstanding scientific achievements in this area, he has opened up a new area of surface science, and made invaluable contributions to the development of this important and new research area in science and technology of material interfaces.

Field of Imaging Techniques in Medicine

Development of ultrasound imaging in medicine

Dr. John Julian Wild
M.D., Ph.D., FAIUM, Head, Physicomical Institute, Minneapolis
USA Born in 1914 Died in 2009

In 1949, Dr. Wild manufactured prototype equipment for A-mode ultrasonography and with this equipment, he succeeded in measuring the thickness of the human colon. This was the first attempt to use ultrasound for biomedical application.

Subsequently, he developed a two-dimensional ultrasound image employing B-mode equipment, for which he has been also recognized as being the first pioneer of medical ultrasonic imaging. The method today is widely used on a variety of occasions including detection and diagnosis of brain tumors and breast cancer. In particular, the breast imaging by this equipment brought about the successful imaging of a tiny 7mm diameter nipple cancer.

Field of Science and Technology for Biological Production

Discovery of method of the cryopreservation of semen and embryos in farm animals

Prof. Ernest John Christopher Polge
The Scientific Director of Animal Biotechnology Cambridge Ltd.
UK Born in 1926 Died in 2006

Prof. Polge developed a new method for preservation of spermatozoa whereby bull semen in glycerol-containing media withstood freezing at a very low temperature (-78°C). This has promoted the growth of what has become a new science of cryobiology with practical applications in various spheres in medicine and agriculture. There is no doubt that the largest application has been in the deepfreezing of semen for artificial insemination, particularly in cattle, in which the impact on breeding and livestock improvement has been great. The development of techniques for the preservation of embryos at low temperatures is now being applied in a number of farm animal species.
Dr. Frank Press
President of U.S. National Academy of Sciences
USA Born in 1924

Dr. Press was the first to propose that the dispersion of long period earthquake surface wave motion could be used as a tool for studying the structure of the earth’s crust and upper mantle. Analyzing surfaces waves, Dr. Press verified that the occurrence of an earthquake is fault motion itself. It was the beginning of modern seismology and the forerunner for studies on earthquake mechanisms.

Dr. Press was the leader in the promotion of scientific research and development in the area of disaster mitigation. As demonstrated by his efforts for International Geophysical Year (IGY) and Worldwide Standardized Seismograph Network (WWSSN), he recognized the importance of international cooperation in disaster sciences. He conceived and has been a leader in promoting the International Decade for Natural Disaster Reduction (IDNDR), a UN program in which the international community, under the auspices of the UN, will pay special attention during the last decade of the century to fostering international disaster (such as earthquakes, floods, droughts, volcanos, landslides, windstorms and wildfires) reduction.

Dr. William Hayward Pickering
Professor Emeritus of the California Institute of Technology
USA Born in 1910 Died in 2004

Dr. Pickering, as a Director of the JPL, the California Institute of Technology, had made many pioneering contributions to space technologies such as the development of spacecraft as a means for space exploration, and the development of deep space communications network for data acquisition for 32 years. Owing to his command and guidance technologies, the USA’s first artificial satellite “Explorer 1” was launched in 1958. And “Pioneer 4”, the design of which was led by him, succeeded in becoming the first U.S. man made object to escape from the Earth’s gravitational field in 1959. He developed new technologies for digital communications and high definition television. His achievements have made significant contributions to the “expansion of mankind’s active domain to outer space”. His technologies have been applied in many fields and have contributed to the welfare of mankind.

Dr. Kary B. Mullis
Founder and Vice President Research, Atomic Tags, Inc.
USA Born in 1944

The polymerase chain reaction (PCR) which was devised by Dr. Mullis, has revolutionized molecular genetics, molecular biology, medicine and many other related scientific fields. The PCR is a way of amplifying specific DNA sequences from small amounts of a complex template. Thus, in medicine the PCR has had a major impact on the diagnosis and screening of genetic diseases and cancer, the rapid detection of fatalistic or slow growing microorganisms and viruses, the detection of minimal residual disease in leukemia. The method has also been applied to studies on molecular evolution. Analysis of DNAs from different human populations allowed the construction of phylogenetic trees. Samples of historic or ancient DNA from extinct species have successfully been subjected to PCR amplification. This capability of analyzing minute quantities of degraded DNA makes it possible to apply PCR for forensic purposes.

Dr. Arvid Carlsson
Professor Emeritus, Gothenburg University
Sweden Born in 1923

Dr. Carlsson has made substantial contributions towards the clarification of the functions of dopamine in the brain. This has promoted causal treatment of Parkinson’s disease. In 1988, he presented a modified hypothesis on schizophrenia. This showed a direction to understand schizophrenia as a putative transmitter imbalance syndrome and opened up new therapeutic strategies for Parkinson’s disease. He has been an international leader in the field of neuropsychopharmacology for three decades. His original and unique discoveries in dopamine research have led to a new understanding and new effective treatments for Schizophrenia and Parkinson’s disease. He has made a great contribution to the development of psychology and psychiatry from the field of neuropsychopharmacology.
1995 (11th)

Field of Materials Processing Technologies

Outstanding contributions to research and practical applications of light emitting diodes and lasers through pioneering achievements in the understanding of physical principles and in the process technology of intermetallic compound semiconductors

Dr. Nick Holonyak, Jr.
Professor, Center for Advanced Study, John Bardeen Chair Professor, University of Illinois
USA Born in 1928

Dr. Holonyak focused his research on intermetallic compound semiconductors, which led him to the invention of the first practical light emitting diode (LED) by the use of GaAsP crystals. In 1962, he made the first visible light semiconductor laser.

He extended his research to develop ternary and quaternary compound semiconductors, and was the first to succeed in independent control of the energy gap and lattice constant for preparing devices.

He was the first (1978) to achieve continuous room temperature operation of a laser with quantum-well-structure.

Dr. Holonyak’s achievements ranging from research to practical developments on light-emitting diodes and lasers gave continuous stimulus and remarkable enrichment both to physics and technology.

1996 (12th)

Field of Information, Computer and Communication Systems

For pioneering research on wide-band, low-loss optical fiber communications

Dr. Charles K. Kao
Vice-Chancellor and President, The Chinese University of Hong Kong.
USA Born in 1933

The research on optical communications, which is expected to bring forth extensive social innovation, substantially started in 1960 with the invention of the laser, followed by studies on light source, transmission line and photodetectors. Dr. Kao predicted in specific terms the possibility of realizing large capacity optical communications using optical fiber, at an earlier phase, based on his own reasoning for the applicability of optical fiber to the large capacity transmission, and estimation of possible transmission range on the basis of presupposed loss and tolerable photoelectric power level. He played pioneering and leading roles in the exploitation of optical fiber transmission lines and his works are clearly appreciated in the world as having exerted a significant impact on the subsequent development of optical communication technology.

Field of Science and Technology for Agriculture, Forestry and Fishery which conserves the Environment

Pioneer contributions in the development of integrated pest management by the sterile insect release method and other biological approaches

Dr. Edward F. Knipling
Retired Director, Entomology Research Division, Agricultural Research Service
USA Born in 1909 Died in 2000

Dr. Knipling has devoted himself to the research on insect pest as a agricultural entomologist since 1931. He proposed the truly original idea of environmentally friendly pest control by suppressing the insect population in agricultural crops and domestic animals. Accordingly, he made outstanding contributions to the improvement of food production. He developed a new concept of insect pest control known as the sterile insect release method. In 1931 he attained great success in eradicating the screwworm fly, a serious and sometimes fatal pest of livestock in the Southwest region of the United States. From 1953, he made important contributions to the development of an environmentally sound method of insect pest control. He proposed and played a key role in promoting Integrated Pest Management. He played a leading role in scientific research and in application of his findings in terms of pest control without harming the environment.

Field of Neuroscience

Elucidation of the functional principles and neural mechanisms of the cerebellum

Dr. Masao Ito
Director-General, Frontier Research Program, The Institute of Physical and Chemical Research
President, Science Council of Japan
Japan Born in 1928

Dr. Ito has tried over 40 years to elucidate neural mechanisms of the brain by using a combination of neurophysiological, cell-biological, system-theoretical, and molecular biological approaches. In particular, he successfully revealed several basic features of cerebellar function, such as inhibitory output of the Purkinje cells which is mediated γ-aminobutyric acid. He also found that the flocculus of the cerebellum plays a key role in adaptive control of the vestibulococular reflex, a basic reflex circuit, by way of a synaptic plasticity, the long-term depression, which is the basic of the learning capability of cerebellar cortical neural circuits. Furthermore, he and his collaborators elucidated molecular processes underlying long-term depression. They succeeded in inducing a reversible learning deficit by temporarily inactivating long-term depression. The recent model he proposed aims at explaining a certain category of mental function, implicit memory, as function of the newest part of the cerebellum. His success gave a great impetus to researches in the neuroscience discipline.
Field of Systems Engineering for an Artifactual Environment

Establishment of the robot industry and creation of a techno-global paradigm (Joint Award)

Dr. Joseph F. Engelberger
Chairman and Director, HelpMate Robotics Inc.
USA Born in 1925

Dr. Engelberger foresaw from the beginning that machines called robots would markedly improve productivity and was a key person in their development and introduction for practical purposes. He has greatly contributed to the long-term expansion and development of the world economy by innovatively improving productivity in the manufacturing industry.

Dr. Hiroyuki Yoshikawa
Former President, The University of Tokyo
Japan Born in 1933

Dr. Yoshikawa has shown that the professional disciplines associated with the production of artifacts have been too specialized with respect to the system of knowledge, which has made the solving of such problems as environmental destruction and depletion of resources difficult.

He has played a leading role in research in systematizing knowledge related to design and manufacturing and has developed a new field called general design theory. Based on this concept, he has proposed artifactual engineering in order to solve the above problems.

Field of Biotechnology in Medicine

Contribution to establishment of fundamental concept on causes of cancer (Joint Award)

Dr. Takashi Sugimura
President Emeritus of National Cancer Center and President of Toho University
Japan Born in 1926

As early as 1957, Dr. Sugimura discovered the carcinogenicity of a mutagen, 4-nitroquinoline-1-oxide. In 1967, he successfully induced stomach cancer in rats by oral administration of a mutagen, N-methyl-N’-nitro-N-nitrosoguanidine. He subsequently established the fact that many carcinogens were mutagens. He successfully isolated and identified many carcinogens with a structure of heterocyclic amine from foods cooked under ordinary conditions. He further developed his studies to analyze multiple step carcinogenesis at molecular levels. He demonstrated that many environmental carcinogens could be identified by their mutagenicity. He has made crucial contributions to the establishment of the fundamental concept on causes of cancer.

Dr. Bruce N. Ames
Professor of Biochemistry and Molecular Biology, University of California, Berkeley
USA Born in 1928

Dr. Ames first established an efficient in vitro assay for mutagens using Salmonella in 1971. This “Ames test” has been used widely in research institutes, industries and regulatory agencies around the world for screening environmental carcinogens and mutagens. This test has also been used to study metabolisms of carcinogens and mutagens. He established the fact that many carcinogens were mutagens. He made further contributions to the understanding of endogenous oxygenradicals in carcinogenesis and to the understanding of the mechanisms involved in aging. He demonstrated the close relationship between mutagenicity and carcinogenicity. He has made crucial contributions to the establishment of the fundamental concept of causes of cancer.
1998 (14th)

Field of Generation and Design of New Materials Creating Novel Functions

For the creation and realization of the concept of man-made superlattice crystals which lead to generation of new materials with useful applications

Dr. Leo Esaki
Former President, University of Tsukuba
Japan Born in 1925

Dr. Esaki proposed the concept of “semiconductor superlattice,” realized it, and discovered its peculiar properties such as negative differential conductivity and resonant tunneling. His concept of the superlattice inspired many other scientists. It underlies the high-speed transistor HEMT, optical devices with multiple-quantum wells, and giant magneto-resistance. “Superlattice” was a great accomplishment in terms of the generation and design of new materials to create novel functions. (Dr. Esaki was awarded with a Nobel Prize in Physics in 1973 for his discovery of tunneling in semiconductor p-n junctions. Superlattice is another great accomplishment he has made.)

Field of Biotechnology in Agricultural Sciences

Establishment of the theory and method of the production of transgenic plants (Joint Award)

Prof. Dr. Jozef S. Schell
Director, Department of Genetic Principles of Plant Breeding,
Max-Planck-Institute für Züchtungsforschung, Germany
Belgium Born in 1935 Died in 2003

Dr. Marc C.E. Van Montagu
Professor, Department of Genetics,
University of Ghent, Belgium.
Belgium Born in 1933

Dr. Schell and Dr. Van Montagu showed that the formation of tumors in plants with Agrobacterium is attributable to insertion of some genes contained in the bacteria into the nuclear genomes of host plants. They utilized this system to develop methods for efficient transfer of foreign genes into plant genomes. Recent advances in the production of transgenic plants have been based on their work.

1999 (15th)

Field of Information Technologies

Establishment of coding theory for reliable digital communication, broadcasting and storage

Dr. W. Wesley Peterson
Professor of Information and Computer Sciences, University of Hawaii at Manoa
USA Born in 1924 Died in 2009

Dr. Peterson authored Error-Correcting Codes, the “bible” for the coding theory, and established the fundamentals of this field. He created the conceptual framework of coding theory on the basis of modern algebra and invented practical implementation methods for error detection and correction. This led to an exceptionally important contribution in the industrial application of error-correcting codes. Current digital communication, broadcasting and storage systems owe their reliability to his research results.

Field of Molecular Recognition and Dynamics in Bioscience

Elucidation of the three-dimensional structures of class I and class II human histocompatibility antigens and their bound peptides (Joint Award)

Dr. Jack L. Strominger
Higgins Professor of Biochemistry, Harvard University.
USA Born in 1925

Dr. Jack L. Strominger
Higgins Professor of Biochemistry, Harvard University.
USA Born in 1925

Dr. Don C. Wiley
John L. Loeb Professor of Biochemistry and Biophysics, Harvard University.
USA Born in 1944 Died in 2001

Dr. Strominger and Dr. Wiley were the first to elucidate the three-dimensional structures of the human histocompatibility complex class I and class II molecules. Their work provided a detailed understanding of how peptides derived from processed foreign antigens and self proteins are presented to T lymphocytes for the initiation of an immune response. Their work also opened a wide vista for investigation of autoimmunity, transplantation rejection, tumor immunity and the response to foreign pathogens.
2000 (16th)

Field of City Planning

Establishment of an ecological city planning process and proposal of a land use evaluation system

Prof. Ian L. McHarg
Professor Emeritus, Department of Landscape Architecture and Regional Planning, University of Pennsylvania. USA Born in 1920 Died in 2001

Prof. McHarg introduced ecological ideas into city planning, visualized environmental ecosystems on overlay maps of factors such as physiography, hydrology, vegetation, and historical landmarks, and developed an innovative land use evaluation system, clarifying the suitability of, and restrictions on, land use. He is recognized as a founder of ecological planning, because of his distinguished achievements in the 1960s - when disorderly urban developments dominated - in ecological city planning, making the most of the abundant potential capabilities of nature. His methodology has had great influence upon city planning in an age when the global environment is of the utmost concern.

Field of Host Defense

Discovery of Immunoglobulin E and mechanisms of IgE-mediated allergic reactions

Dr. Kimishige Ishizaka
President Emeritus, La Jolla Institute for Allergy and Immunology Japan Born in 1925

Dr. Ishizaka was the first to discover immunoglobulin E and to elucidate fundamental mechanisms of allergic reaction at cellular and molecular levels. His work has profoundly influenced other medical research areas and even contributed to the clinical diagnosis and treatment of allergic diseases.

Field of Marine Biology

Contribution to the development of biological / fisheries oceanography and for conservation of fishery resources and marine environment

Dr. Timothy R. Parsons
Professor Emeritus, University of British Columbia Canada Born in 1932

Through his research devoted to obtaining a holistic understanding of how pelagic organisms are interconnected in the trophodynamic food-web of the sea, Dr. Parsons has made a great contribution to the development of Biological Oceanography as determined today. His goal has been to present an alternative method for the management of fisheries, based on measuring of dynamic relationships between fish and their physical, chemical and biological environments.

2001 (17th)

Field of Science and Technology of Environment Conscious Materials

Discovery of environmentally benign electrode materials for high energy density rechargeable lithium batteries

Dr. John B. Goodenough
Professor, University of Texas USA Born in 1922

Dr. Goodenough recorded notable achievements in the field of solid-state science and made a great contribution to fundamental science. His well-known studies are on magnetism and the conductivity of transition metal compounds and on superionic conductors. Based on these research results and with profound insights, he found electrode materials for high-performance lithium batteries and used these materials to develop high-capacity portable rechargeable batteries. These batteries are not only environmentally benign but also very effective in the reduction of carbon dioxide emission.

Field of Marine Biology

Contribution to the development of biological / fisheries oceanography and for conservation of fishery resources and marine environment

Dr. Timothy R. Parsons
Professor Emeritus, University of British Columbia Canada Born in 1932

Through his research devoted to obtaining a holistic understanding of how pelagic organisms are interconnected in the trophodynamic food-web of the sea, Dr. Parsons has made a great contribution to the development of Biological Oceanography as determined today. His goal has been to present an alternative method for the management of fisheries, based on measuring of dynamic relationships between fish and their physical, chemical and biological environments.
Dr. Benoit B. Mandelbrot
Sterling Professor of Mathematical Sciences, Mathematics Department, Yale University
IBM Fellow Emeritus, TJ Watson Research Center, International Business Machines Corporation
USA Born in 1924 Died in 2010

Dr. James A. Yorke
Distinguished University Professor of Mathematics and Physics, Institute for Physical Sciences and Technology, University of Maryland
USA Born in 1941.

The world we live in is so complex that it is an enormous challenge to understand the fundamental nature of its complexities. Nature is filled with complex geometrical shapes. Dr. Mandelbrot discovered that “self-similarity” is the universal property that underlies such complex shapes, and he coined the expression “fractal.” Many different, variable complex patterns of behavior are found in dynamic phenomena, Dr. Yorke found the universal mechanism underlying such nonlinear dynamic phenomena and summed it up using the term “chaos.”

The two concepts, chaos and fractals, have been established as universal concepts underlying such phenomena. Dr. Mandelbrot and Dr. Yorke utilized, respectively, the terms fractal and chaos and elucidated their fundamental properties. They have provided new frameworks for understanding complex phenomena, and have defined both their foundations and their applications.

Dr. Seiji Ogawa
Director, Ogawa Laboratories for Brain Function Research, Hamano Life Science Research Foundation
Japan Born in 1934

Dr. Ogawa discovered the principle upon which the field of functional and physiological imaging of the human body, particularly the human brain, is based. He searched for physiologically dependent signals in magnetic resonance imaging (MRI), and found BOLD (Blood Oxygenation Level Dependence) signal contrast in MR images of the brain. This work has proved to be the fundamental basis of noninvasive functional imaging methodology that is now widely used not only in many biological and medical sciences, such as neurobiology, psychology and neurology, but also in many fields of clinical medicine as diagnostic tools.

Dr. Timothy John Berners-Lee
Senior Research Scientist, Laboratory for Computer Science, M.I.T.
UK Born in 1955

Dr. Berners-Lee is the inventor of the World Wide Web (www). Through his invention people were able to acquire information and work together by combining their knowledge in a web using hypertext documents through the Internet. He implemented the first www using HTML, Hypertext Markup Language developed by himself. The www has made revolutionary change in information exchange and communication among people, contributing to the globalization of information and communication in the world. It has created new forms of commercial and industrial activities like E-commerce, internet publications of newspapers and books, and more. The World Wide Web has made a profound and farreaching contribution not only to science and technology but also to the advancement of the civilization.

Dr. Anne McLaren
Principal Research Associate, Wellcome Trust / CRC Institute
UK Born in 1927 Died in 2007

Drs. McLaren and Tarkowski pioneered the developmental biology of mammals using a mouse as a model and established technologies to manipulate early embryos. Taking advantage of chimeric embryos in particular, they demonstrated the enormous plasticity of early embryonic cells, and gave deep insight into fundamental questions on mammalian embryonic development, such as how sexes differentiate, how genetic information of sexually distinct parents differentially contributes to development, and how cells interact in developing tissues. This work has proved fundamental as regards major issues not only of current developmental biology which are of increasing importance, but also for the progress of basic medical and veterinary sciences.

Dr. Andrzej K. Tarkowski
Director of the Institute of Zoology, Warsaw University
Poland Born in 1933

Dr. Seiji Ogawa
Director, Ogawa Laboratories for Brain Function Research, Hamano Life Science Research Foundation
Japan Born in 1934

Dr. Ogawa discovered the principle upon which the field of functional and physiological imaging of the human body, particularly the human brain, is based. He searched for physiologically dependent signals in magnetic resonance imaging (MRI), and found BOLD (Blood Oxygenation Level Dependence) signal contrast in MR images of the brain. This work has proved to be the fundamental basis of noninvasive functional imaging methodology that is now widely used not only in many biological and medical sciences, such as neurobiology, psychology and neurology, but also in many fields of clinical medicine as diagnostic tools.

Dr. Timothy John Berners-Lee
Senior Research Scientist, Laboratory for Computer Science, M.I.T.
UK Born in 1955

Dr. Berners-Lee is the inventor of the World Wide Web (www). Through his invention people were able to acquire information and work together by combining their knowledge in a web using hypertext documents through the Internet. He implemented the first www using HTML, Hypertext Markup Language developed by himself. The www has made revolutionary change in information exchange and communication among people, contributing to the globalization of information and communication in the world. It has created new forms of commercial and industrial activities like E-commerce, internet publications of newspapers and books, and more. The World Wide Web has made a profound and farreaching contribution not only to science and technology but also to the advancement of the civilization.
Dr. Kenichi Honda
Professor Emeritus, The University of Tokyo
Japan Born in 1925 Died in 2011

Dr. Akira Fujishima
Chairman, Kanagawa Academy of Science and Technology
Japan Born in 1942

Dr. Honda and Dr. Fujishima found that irradiation of solar light onto a single crystal titanium dioxide (TiO₂) electrode resulted in the splitting of water into hydrogen and oxygen (The Honda-Fujishima effect). Thus, they pioneered research on artificial photosynthesis and production of hydrogen as a clean energy from water by using solar light. Furthermore, the development of the self-cleaning coatings of TiO₂ on a variety of surfaces is going to produce a new industry of photocatalysts, which significantly contributes to environmental conservation. The contributions of these two scientists to “Chemical Technology for the Environment” for the sustainable development of society are enormous.

Dr. Keith J. Sainsbury
Senior Principal Research Scientist, Division of Marine Research, Commonwealth Scientific and Industrial Research Organization
New Zealand Born in 1951

Dr. Sainsbury greatly contributed to the establishment of marine bio-resource management strategies for sustainable fishery production based on his basic studies on population dynamics including experimental fishery management mainly of demersal fish resources in the shelf ecosystem and consequently to the planning of the Australian marine policy. He also contributed much to the development of a paradigm for sustainable utilization of fishery resources in tropical and temperate marine areas.

Prof. John H. Lawton
Chief Executive, Natural Environment Research Council
UK Born in 1943

Prof. Lawton is a prolific contributor to fundamental research on the ecological aspect of biodiversity. He studied various organisms, including birds, mammals, insects, and plants. He analyzed various species of these groups and the ways in which they co-exist with other species. Based on conservation, biological observation and analysis, he also contributed to the protection of bird species, actually serving as a key person in environmental NGOs.
2005 (21st)

Field of Information and Media Technology

Pioneering contributions to natural language processing and intelligent image processing

Dr. Makoto Nagao
President, National Institute of Information and Communications Technology
Japan Born in 1936

Dr. Nagao has pioneered research in the fields of machine translation, natural language processing, and image processing, and has achieved extensive results that have had a significant impact on other researchers in this field. Notably, he developed a fully functional Japanese-to-English / English-to-Japanese translation system, and was the world’s first advocate of example based translation in machine translation. In image processing, he was the first to introduce feedback analysis mechanisms, which had a dramatic impact on many later research activities. He developed the world’s first digital library prototype system incorporating natural language processing and image processing technologies, and has contributed to the new digital library era. In addition to being a pioneer, Dr. Nagao has been a leader in this field as well, for example as a founder of the International Association for Machine Translation and The Association for Natural Language Processing.

Field of Cell Biology

Fundamental contribution in elucidating the molecular mechanisms of cell adhesion (Joint Award)

Dr. Masatoshi Takeichi
Director of RIKEN Center for Developmental Biology
Japan Born in 1943

Dr. Erkki Ruoslahti
Distinguished Professor, The Burnham Institute
USA Born in 1940

Cell adhesion is fundamentally important in the construction of tissues and organs. Dr. Takeichi and Dr. Ruoslahti pinpointed the essential core processes in the complex phenomena of cell adhesion and succeeded in elucidating the mechanisms at the molecular level. Their accomplishments are expected to fundamentally contribute to working out the etiology and developing therapy of serious diseases such as malignant tumors.

2006 (22nd)

Field of Global Change

For pioneering research on atmospheric structure and composition based on his satellite observation technology and for promotion of international assessments of climate change.

Sir John Houghton
Honorary Scientist, Hadley Centre for Climate Prediction and Research and Formerly Chief Executive, Meteorological Office, U.K.
UK Born in 1931

Observations by weather satellites began in the 1970s. When Sir John Houghton developed a new means for making observations to measure the temperatures and composition of the upper atmosphere based on his independent theory. This opened the way to elucidating the three-dimensional temperature structure of, and distribution of micro-components such as ozone in the atmosphere across the entire globe. Then he established the Hadley Centre for Climate Prediction and Research to pursue this research and to study international climate change. He also has played a central role in compiling the First, Second and Third Assessment Reports under the auspices of the Intergovernmental Panel on Climate Change (IPCC).

Field of The Development of Novel Therapeutic Concepts and Technologies

The discovery of the statins and their development

Dr. Akira Endo
Director, Biopharm Research Laboratories, Inc., Tokyo, Japan
Japan Born in 1933

In 1973 Dr. Endo isolated from penicillium a ground-breaking substance called ML-236B (currently known as compactin) that lowers blood cholesterol levels, and confirmed that it was also effective in humans. This discovery triggered world-wide research into the compactin group and resulted in the birth of several hypercholesteremia drugs from amongst that group. These drugs, known collectively as statins, are presently used by approximately thirty million people around the world and help to prevent cardiac disease and strokes and so on.
In recent times, the destruction of tropical forests has been progressing at an alarming rate. Tropical forests are a veritable treasury of a diverse array of many forms of life, and it is widely believed that the loss of this environment would have a major impact on the ecosystem of the entire planet. Dr. Ashton was awarded the 2007 Japan Prize in the category of “Science and Technology of Harmonious Co-Existence” for his extensive research into the phylogenetic systemization of flora and ecological studies in the tropical forests of Southeast Asia, and the contribution his findings have made to tropical conservation efforts.

With the completion of the human genome project, we have come to understand almost all of the genetic information contained in DNA, which is encoded in a series of letters. However, we are still some way from fully identifying those parts which are related to the treatment of diseases. Dr. McKusick has spent over half a century compiling related knowledge, and advocating the importance of the formulation of a genomic map for genetic disorders. Today, researchers and clinicians around the world are sharing the fruits of Dr. McKusick’s labors which have become indispensable to the world of genetic medicine.
For humanity, the Earth is both irreplaceable and finite. The continued survival of humanity on Earth depends on its success in creating a “sustainable society.” More than 30 years ago, Dr. Meadows was at the center of a research group that used scientific analysis to make this point. “The Limits to Growth” shocked the world when first published in 1972, and it continues even today to illuminate the way forward.

LSI (large-scale integration) and the HDD (hard disk drive) which records information have played major roles in the progress of computer technology in the 20th century. It is not an exaggeration to say that the miniaturization and the increasing capacity of the HDD have created the information society through the Internet. Furthermore, what is giving behind-the-scenes support to the attainment of the next-generation system such as cloud computing is the ever-increasing capacity of the HDD by means of the perpendicular magnetic recording method. Prof. Iwasaki, through inspiration from the research of the magnetic recording principle, has developed the perpendicular magnetic recording method, which is more advantageous in attaining higher capacity in comparison to the conventional horizontal magnetic recording method. Since he advocated this method to the world in 1977, he has continued research and development for the practical application thereof.

Today various types of diagnostic imaging systems including CT (computed tomography) are used on a daily basis in hospitals and clinics all over the world. Dr. Kuhl, one of the world pioneers in tomography, began experimenting in the late 1950s by taking cross-sectional images of the distribution of radioisotopes in the body. He went on to develop SPECT (single photon emission computed tomography) in the late 1960s and succeeded in producing the world’s first tomographic images of the human body. In addition to having a profound impact on the subsequent development of X-ray CT scanning and MRI (magnetic resonance imaging), Dr. Kuhl’s research brought about the realization of PET (positron emission tomography), which is proving to be invaluable in the early detection of cancers.

Since the Industrial Revolution, human economic activities have continued to expand, making the earth a relatively smaller place. Prof. Vitousek, an expert in ecosystems ecology, has been studying the material cycle of such nutrient elements as nitrogen and phosphorus in the ecosystem. Based on the aforementioned research, Prof. Vitousek has made pioneering achievements in the field of “biogeochemistry,” which analyzes how various factors influence the ecosystem. From his achievements, he has pointed out the serious effects human activities have on the global environment as well as potential solutions for solving global environmental issues.
With present computer systems, basic software called operating systems are used in addition to application software to perform word processor, spreadsheet tasks, and so on. Dr. Ritchie and Dr. Thompson developed an advanced operating system called UNIX in 1969. The operating systems in those days were increasing in scale but becoming complex and disorderly. With UNIX, stability and high-speed performance could be attained by combining modularized programs. UNIX’s superior design concept has been carried on by many computer technicians, and has supported the development of an advanced information society including the Internet.

Our bodies detect external invasions of bacteria and viruses and eliminate them. This mechanism is called “immunity.” Immunity is a complex system consisting of various cells such as lymphocytes (T-cells, B-cells) and macrophage, but the substance which plays an important role in transmitting information between cells is called interleukin. Dr. Kishimoto and Dr. Hirano have purified interleukin 6 (IL-6), which plays a vital part in the production of antibodies, and also succeeded in gene cloning in 1986. In addition, the two doctors have identified a wide range of functions of IL-6 and their research results have contributed to the progress of bioscience and the development of therapeutic drugs for inflammatory diseases.
Chronic myelogenous leukemia (CML) is a disease which is caused when a hematopoietic stem cell in the bone marrow turns cancerous. In 2001, with the introduction of the molecularly targeted drug imatinib, treatment results dramatically improved. The origin of imatinib began in 1973 when Dr. Rowley discovered that chromosomes 9 and 22 were recombined in the white blood cells of patients with CML. Dr. Druker and Dr. Lydon succeeded in developing a drug which suppressed the activity of the BCR-ABL protein which occurs as a result of the chromosomal recombination. At present, molecularly targeted drugs are indispensable to the treatment of cancer and autoimmune diseases, and the results obtained from the studies of Dr. Rowley, Dr. Druker and Dr. Lydon underscored the importance of developing molecularly targeted drugs, providing a guiding post for future research.
The most important key technology which has been the driving force for innovation in semiconductor technology over the past half a century is lithography, which engravens fine circuits in semiconductors. Dr. Grant Willson and Dr. Jean Fréchet, along with the late Dr. Hiroshi Itoh, embarked on the development of the resist to be used for lithography in the early 1980’s, and succeeded in developing a new key technology known as a chemically amplified resist. Through the use of resist developed jointly by the three doctors, a lithography using a short wavelength deep ultraviolet (deep UV: wavelength 254nm) was achieved. By improving this chemically amplified resist, an era of the next generation integrated circuit with a minimum semiconductor circuit width of under 250nm was opened up. The chemically amplified resist is an important technology for the extreme ultraviolet lithography (EUV; wavelength 1-10nm), a present leading edge technology, as well as for electron lithography, and is a key technology in creating new types of electronics.
Directors, Auditors and Councilors of the Foundation

Directors, Auditors

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Organization/Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman</td>
<td>Hiroyuki Yoshikawa</td>
<td>Director - General, Center for Research and Development Strategy, Japan Science and Technology Agency</td>
</tr>
<tr>
<td>President</td>
<td>Yoshio Yazaki</td>
<td>Chancellor, International University of Health and Welfare</td>
</tr>
<tr>
<td>Senior Executive Director</td>
<td>Ken Shimba</td>
<td>Secretary General, The Japan Prize Foundation</td>
</tr>
<tr>
<td>Directors</td>
<td>Masahiro Ando</td>
<td>President, Shin Joho Center, Inc.</td>
</tr>
<tr>
<td></td>
<td>Hirotou Ishida</td>
<td>Visiting Professor, The University of Tokyo</td>
</tr>
<tr>
<td></td>
<td>Yoshio Karita</td>
<td>Senior Advisor, Mori Building Co., Ltd.</td>
</tr>
<tr>
<td></td>
<td>Nobuhide Kasagi</td>
<td>Professor Emeritus, the University of Tokyo Principal Fellow, Japan Science and Technology Agency</td>
</tr>
<tr>
<td></td>
<td>Masayuki Matsushita</td>
<td>Vice Chairman of the Board, Panasonic Corporation</td>
</tr>
<tr>
<td>Auditors</td>
<td>Tsuneo Ibuka</td>
<td>Director of Administration, The Matsushita Institute of Government and Management</td>
</tr>
<tr>
<td></td>
<td>Akio Nomura</td>
<td>Senior Advisor, Osaka Gas Co., Ltd.</td>
</tr>
</tbody>
</table>

(As of April 1, 2013)

Councilors

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Organization/Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman of Board of Councilors</td>
<td>Taro Nakayama</td>
<td>Former Member of the House of Representatives</td>
</tr>
<tr>
<td>Vice-Chairman of Board of Councilors</td>
<td>Nobuaki Kumagai</td>
<td>Professor Emeritus, Osaka University</td>
</tr>
<tr>
<td>Councilors</td>
<td>Haruo Hirano</td>
<td>Vice Chairman, Japan Information Center</td>
</tr>
<tr>
<td></td>
<td>Hiroo Inokuchi</td>
<td>Research Director, Toyota Physical and Chemical Research Institute</td>
</tr>
<tr>
<td></td>
<td>Moriya Koyama</td>
<td>Adviser, SECOM Co., Ltd.</td>
</tr>
<tr>
<td></td>
<td>Tomonori Kudoh</td>
<td>Comptroller, Tokyo Denki University</td>
</tr>
<tr>
<td></td>
<td>Yoichi Morishita</td>
<td>Corporate Counsellor, Panasonic Corporation</td>
</tr>
<tr>
<td></td>
<td>Shigeru Motai</td>
<td>Former Vice-Minister of Agriculture, Forestry and Fisheries</td>
</tr>
<tr>
<td></td>
<td>Saburo Nagakura</td>
<td>President, Musashino Free University</td>
</tr>
<tr>
<td></td>
<td>Akira Nishigaki</td>
<td>Former Administrative Vice Minister of Finance</td>
</tr>
<tr>
<td></td>
<td>Takashi Sugimura</td>
<td>Vice President, The Japan Academy</td>
</tr>
<tr>
<td></td>
<td>Michio Suzuki</td>
<td>Adviser, Association for Construction Service of Kanto Region</td>
</tr>
<tr>
<td></td>
<td>Nobutaka Takahashi</td>
<td>Professor Emeritus, The University of Tokyo</td>
</tr>
<tr>
<td></td>
<td>Shoichiro Toyoda</td>
<td>Honorary Chairman, Toyota Motor Corporation</td>
</tr>
<tr>
<td></td>
<td>Maomi Yamashita</td>
<td>Chairman, YOKUFUKAI, The Foundation of Social Welfare</td>
</tr>
</tbody>
</table>

(As of April 1, 2013)
Donating to our Foundation

Any donations to our foundation will be greatly received. The money will go towards expanding our activities.
If you wish to make a donation or have any queries, please contact our office.
Our foundation is a certified Public Interest Incorporated Foundation which falls under the category of “Special Public Interest Promotion Corporation”. Personal or corporate, any donation to our foundation will be given preferential tax treatment according to the tax laws.
JAPAN PRIZE 2013